If sin⁴ A - cos⁴ A = 1 and 0 < A <_ 90°, then A =? ( The answer is 45°). Just tell the process
Answers
Answered by
1
Step-by-step explanation:
If sin⁴ A - cos⁴ A = 1
(sin^2 A- cos^2 A )(sin^2 A+cos^2 A)=1
we know that,
sin^2 A+cos^2 A)=1
putting in above equation we get:
sin^2 A-cos^2 A)=1
(sin^2 A=1-cos^2 A)
1-cos^2 A-cos^2 A=1
cos^2 A = 0
cos A =0------(1)
we know that ,
cos 90°=0------(2)
From (1) and (2),
A=90°
A cannot be 45 as sin 45 = cos 45 =1/√2
so sin^4 45°- cos ^4 45° =0
when A=45°
Answered by
2
Answer:
Given that,
sinA - cosA = 0
⇒ sinA = cosA
⇒ sinA/cosA = 1
⇒ tanA = 1
⇒ tanA = tan45°
⇒ A = 45°
∴ sin⁴A + cos⁴A
= sin⁴45° + cos⁴45°
= (1/√2)⁴ + (1/√2)⁴
= 1/4 + 1/4
= 2/4
= 1/2
Similar questions