Math, asked by deepika1027, 10 months ago

If sin80°-
cos 70=
cosx°,then x/10=

Answers

Answered by erinna
0

Given:

\sin 80^\circ-\cos 70^\circ=\cos x^\circ.

To find:

The value of \dfrac{x}{10}.

Solution:

We have,

\sin 80^\circ-\cos 70^\circ=\cos x^\circ

\sin 80^\circ-\cos (90^\circ-20^\circ)=\cos x^\circ

\sin 80^\circ-\sin (20^\circ)=\cos x^\circ    [\because \cos (90^\circ -\theta) = \sin \theta]

2\sin (\dfrac{80^\circ -20^\circ}{2})\cos (\dfrac{80^\circ+20^\circ}{2})=\cos x^\circ      [\because \sin A-\sin B=2\sin(\dfrac{A-B}{2})\cos (\dfrac{A+B}{2})]

2\sin (30^\circ)\cos (50^\circ)=\cos x^\circ

2\times \dfrac{1}{2}\times \cos (50^\circ)=\cos x^\circ       [\because \sin (30^\circ)=\dfrac{1}{2}]

\cos (50^\circ)=\cos x^\circ

On comparting both sides, we get

x=50

Now,

\dfrac{x}{10}=\dfrac{50}{10}=5

Therefore, the required value is 5.

Answered by isyllus
0

Given:

sin80^\circ-cos70^\circ=cosx^\circ

To find:

\dfrac{x}{10}=?

Solution:

Let us have a look at a few formula first:

1. cos(90^\circ-\theta)=sin\theta

2. sinA-sinB=2cos(\dfrac{A+B}{2})sin(\dfrac{A-B}{2})

Using first formula in Left Hand Side(LHS) of the given expression:

cos70^\circ can be written as cos(90^\circ-20^\circ)

So, cos70^\circ=sin20^\circ

Therefore, the given expression becomes:

sin80^\circ-sin20^\circ

Now, using the second formula:

sin80^\circ-sin20^\circ==2cos(\dfrac{80^\circ+20^\circ}{2})sin(\dfrac{80^\circ-20^\circ}{2})\\\Rightarrow 2cos50^\circ sin30^\circ

We know that:

sin30^\circ=\dfrac{1}{2}

So, the expression becomes:

2cos50^\circ \times \dfrac{1}{2}\\\Rightarrow cos50^\circ

Comparing with Right Hand Side(RHS):

cos50^\circ=cosx^\circ\\\Rightarrow x =50^\circ

Dividing by 10:

\dfrac{x}{10}=\dfrac{50^\circ}{10}\\\Rightarrow \dfrac{x}{10}=\bold{5^\circ}

Similar questions