If sinA=1/2, find the value of 2secA / 1+tan^2 A
Answers
Answered by
19
This is the solution of your question.
Attachments:
sayanavalsan96:
thank u
Answered by
10
since, sinA = 1/2
then cosA = √(1 - sin^2 A )
cosA = √1 - (1/2)^2
cosA = √(1 - 1/4 )
cosA = √3 /2
secA = 1/ cosA = 1/(√3/2 ) = 2/ √3
secA = 2/√3
tanA = sinA / cosA = ( 1/2 )/ (√3 / 2 )
TanA = 1/2 × 2/√3
TanA = 1/√3
therefore ,
2secA /1 + tan^2 A
=(2 × 2/√3 ) / 1 + (1/√3 )^2
=(4 /√3 ) / (1 + 1 /3 )
=(4 /√3 ) / ( 4 /3 )
=4 /√3 × 3/ 4
=3 / √3
=3 /√3 × √3 /√3
=3√3 / 3
=√3
_______________________________
Your Answer : √3
_______________________________
then cosA = √(1 - sin^2 A )
cosA = √1 - (1/2)^2
cosA = √(1 - 1/4 )
cosA = √3 /2
secA = 1/ cosA = 1/(√3/2 ) = 2/ √3
secA = 2/√3
tanA = sinA / cosA = ( 1/2 )/ (√3 / 2 )
TanA = 1/2 × 2/√3
TanA = 1/√3
therefore ,
2secA /1 + tan^2 A
=(2 × 2/√3 ) / 1 + (1/√3 )^2
=(4 /√3 ) / (1 + 1 /3 )
=(4 /√3 ) / ( 4 /3 )
=4 /√3 × 3/ 4
=3 / √3
=3 /√3 × √3 /√3
=3√3 / 3
=√3
_______________________________
Your Answer : √3
_______________________________
Similar questions