If sinA=1/2 show that 3cosA -4cos^3A=0
Answers
Answered by
13
Answer:
Step-by-step explanation:
In a right angled ∆ it is given that
Sin A = 1/2=opp.side/ hypotenuse
Adjacent side =
√[(hypotenuse) ^2-(opp.side) ^2]
= √(4-1) =√3.
Cos A = aaj. Side/hypotenuse= √3 /2
Then,
LHS= 3 cosA-4cos^3A= 3√3/2 -4 (√3/2)^3
= 3√3/2 - 4(3√3/8) = 3√3/2-3√3/2
= 0=RHS
Hence proved.
Answered by
4
Step-by-step explanation:
sinA=1÷2
sinA=sin30
eliminate sin on both sides
1.A=30
3cosA-4cos^3A
3cos30degrees-4cos^3 30degrees
3(root3÷2)-4(root3÷2)^3
3root3÷2-4(3)÷8×root3
12root3-12root3÷8
0÷8
0
hence proved
Similar questions
Social Sciences,
7 months ago
Hindi,
7 months ago
English,
7 months ago
Math,
1 year ago
Environmental Sciences,
1 year ago