Math, asked by palakpreetkaur6984, 7 months ago

If sinA=1/2, then the value of CotA=?

Answers

Answered by Anonymous
163

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}

\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}If sinA=1/2 ,then find the value of CotA=?

\huge\tt{\boxed{\overbrace{\underbrace{\blue{Answer</p><p> }}}}}

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

⟹SinA=  \frac{1(P)}{2(H)}

Here perpendicular is 1 & Hypotenuse is 2

\red{By. using. Pythagoras. theorem }:-

 ⟹{H}^{2}  =  {P}^{2}  +  {B}^{2}

⟹ {(2)}^{2}  =  {1}^{2}  +  {B}^{2}

 ⟹4 - 1 =  {B}^{2}

 ⟹ {B}^{2}  = 3

⟹B =  \sqrt{3}

Now CotA=Base/Perpendicular

⟹CotA=   \frac{ \sqrt{3} }{1}  =  \sqrt{3}

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by sakshi4472
3

Answer:

sinA=1/2 = a/h

by phthagoras theorem

b= √3

putting cotA=b/p

=> cotA = √3/1

Similar questions