Math, asked by vansh76077, 8 months ago

If SinA =1/√2 then the value of CotA will be

Answers

Answered by chetanmittal85
0

Answer:

cotA=1

Step-by-step explanation:

sinA =p/B,1/✓2

cotA=B/P ,1/1=1

CotA =1

Answered by Anonymous
2

GIVEN :-

  • given that sin a = 1 / √2

TO FIND :-

  • value of cot a

SOLUTION :-

 \implies \rm{sin \: a =  \dfrac{1}{ \sqrt{2} } }

now squaring both sides ,

\implies \rm{sin  {}^{2} \: a =  (\dfrac{1}{ \sqrt{2}}) {}^{2}  }

\implies \rm{sin  {}^{2} \: a =  (\dfrac{1}{ {2}}) {}^{}  }

now we know that according to TRIGNOMETRIC IDENTITIES :-

\implies \boxed {\rm{sin  {}^{2} \: a +  {cos}^{2}  \: a =  1  }}

hence ,

put the value of sin² a

\implies \rm{ \:  \dfrac{1}{2}  +  {cos}^{2}  \: a =  1  }

\implies \rm{ \:    {cos}^{2}  \: a =  1 - \dfrac{1}{2} }

\implies \rm{ \:    {cos}^{2}  \: a =  \dfrac{2 - 1}{2} }

\implies \rm{ \:    {cos}^{2}  \: a =  \dfrac{ 1}{2} }

\implies \rm{ \:   \sqrt{  {cos}^{2} \: a \:  \: } =   \sqrt{ \dfrac{ 1}{2} \: } }

\implies  \rm{ \:     cos\: a \:  \:  =   \dfrac{ 1}{\sqrt{2 \:  \: } \: }}

\implies \boxed{ \rm{ \:     cot\: a \:  \:  =   { \dfrac{ cos\: a}{s in \: a \: } \: }} }

\implies  \boxed{ \boxed {\rm{ \:     cot\: a \:  \:  =    1  }}}

OTHER INFORMATION :-

TRIGNOMETRIC IDENTITIES

  • sin²∅ + cos²∅ = 1

  • sec²∅ - tan²∅ = 1

  • cosec²∅ - cot²∅ = 1

TRIGNOMETRIC RATIOS

  • sin ∅ = 1 / cosec ∅

  • cos ∅ = 1 / sec ∅

  • tan ∅ = 1 / cot ∅

TRIGNOMETRIC COMPLEMENTRY ANGLES

  • sin ∅ = cos ( 90 - ∅ )

  • cos ∅ = sin ( 90 - ∅ )

  • sec ∅ = cosec ( 90 - ∅ )

  • cosec ∅ = sec ( 90 - ∅ )

  • tan ∅ = cot ( 90 - ∅ )

  • cot ∅ = tan ( 90 - ∅ )
Similar questions