Math, asked by surendrasanodiya2016, 1 year ago

if sinA=1/3, evaluate cosA+cosec A secA ​

Answers

Answered by DhanyaDA
1

Given

sinA=\dfrac{1}{3}

To find

cosA+cosec A secA

Explanation

\sf consider \: \bigtriangleup ABC,

sinA=\dfrac{1}{3}

we know that

 \boxed{ \bf sina =  \dfrac{opposite}{hypotense} }

So

\sf in \: \bigtriangleup ABC,

hypotenuse=3 units

opposite side =1 unit

Let us find adjacent side now

we know that

Hypotenuse ²=opposite²+adjacent²

  =  > {3}^{2}  =  {1}^{2}  + adjacent

 =  > 9 - 1 = adjacent

 =  > adjacent = 2 \sqrt{2} units

Now

\boxed{\bf CosA=\dfrac{adjacent}{hypotenuse}}

CosA=\dfrac{2\sqrt{2}}{3}

\boxed{\bf CosecA=\dfrac{1}{SinA}}

CosecA=\dfrac{3}{1}

\boxed{\bf SecA=\dfrac{1}{CosA}}

SecA=\dfrac{3}{2\sqrt{2}}

Now

we need cosA+cosec A× secA

 =  >   \dfrac{2 \sqrt{2} }{3}  + 3 \times  \dfrac{3}{2 \sqrt{2} }  \\  \\  =  >  \dfrac{2 \sqrt{2} }{3}  +  \dfrac{9}{2 \sqrt{2} }  \\  \\  =  >  \dfrac{ {(2 \sqrt{2)} }^{2} + 9 \times 3 }{6 \sqrt{2} }  \\  \\  =  >  \dfrac{8 + 27}{6 \sqrt{2} }  \\  \\  =  >  \dfrac{35}{6 \sqrt{2} } units

Attachments:
Similar questions