Math, asked by muneer3616, 6 months ago

If sinA=1/3 then find all other trigonometric ratios

Answers

Answered by Ataraxia
13

Given :-

\sf sinA = \dfrac{1}{3}

To Find :-

\bullet \sf \ cosecA \\\\\bullet \ cosA \\\\\bullet \ secA \\\\\bullet \ tanA \\\\\bullet \ cotA

Solution :-

We know :-

\bf cosecA = \dfrac{1}{sinA}

\sf\therefore cosecA = 3

We know :-

\bf sin^2A+cos^2A = 1

\longrightarrow \sf \dfrac{1}{3}^2+cos^2A = 1 \\\\\longrightarrow cos^2A = 1- \dfrac{1}{9}\\\\\longrightarrow cos^2A = \dfrac{9-1}{9} \\\\\longrightarrow cos^2A = \dfrac{8}{9} \\\\\longrightarrow cosA = \sqrt{\dfrac{8}{9}} \\\\\longrightarrow \bf cosA = \dfrac{\sqrt{8 }}{3}

We know :-

\bf secA = \dfrac{1}{cosA}

\therefore \sf secA = \dfrac{3}{\sqrt{8} }

We know :-

\bf tanA = \dfrac{sinA}{cosA}

\therefore \sf tanA = \dfrac{1}{3} \times \dfrac{3}{\sqrt{8} }

           = \sf \dfrac{1}{\sqrt{8} }

We know :-

\bf cotA = \dfrac{1}{tanA}

\therefore \sf cotA = \sqrt{8}

Answered by OfficialPk
4

sinA = 1/3

from the above

opposite side = 1

hypotnuse = 3

adjacent side = x^2+1^2 = 3^2 ( pythogoras therom sum of squares of sides = hypotnuse square )

=x^2 +1 = 9

= x^2 = 8

= x = \sqrt{8}

= x = \sqrt{4×2}

x =  2\sqrt{2}

so cosA = \frac{adjacent side}{hypotnuse}

= \frac{2\sqrt{2}}{3}

tanA = \frac{sinA}{cosA}

= \frac{1}{2\sqrt{2}}

CosecA = \frac{1}{sinA}

=\frac{1}{\frac{1}{3}}

= 3

cotA = \frac{1}{tanA}

=  2\sqrt{2}

secA = \frac{1}{cosA}

= \frac{1}{2\sqrt{2}}

= 2\sqrt{2}

Similar questions