Math, asked by Victormarshall95, 1 year ago

If sina=1/3 then find the value of 2cot^2a+2

Answers

Answered by MichalBay
58
if sinA=1/3
Then 2cot²A+2
=2(cot²A+1)
=2cosec²A. [` . ` cot²A+1=cosec²A] =2(1/sinA)² [' . ' cosecA=1/sinA]
=2×3²/1
= 18 ..Ans

MichalBay: I hope this is helpful.
Victormarshall95: Tysm
MichalBay: don't forget to give it brainiest
Victormarshall95: Done!
Answered by parmesanchilliwack
4

Answer:

18

Step-by-step explanation:

Given,

sin a = \frac{1}{3} -----(1)

\sqrt{1-cos^2a}=\frac{1}{3}     ( sin² a + cos² a = 1 ⇒ sin² a = 1 -  cos² a ⇒ sin a = √(1-cos²a) )

1-cos^2a=\frac{1}{9}

-cos^2a=\frac{1}{9}-1

-cos^2a=-\frac{8}{9}

cos^2a=\frac{8}{9} -------(2)

Now,

cot a = \frac{cos a}{sin a}

\implies cot^2a = \frac{cos^2a}{sin^2a}=\frac{\frac{8}{9}}{\frac{1}{9}}=8---(3)

Thus,

2 cot^2a+2=2\times 8+2 = 16+2=18 ( From equation (3) )

Similar questions