if sinA + 2cosA=1 prove that 2sinA-cosA = 2
Answers
Answer:
Sin A + 2 Cos A = 1
Squaring on both sides, we get,
=> ( Sin A + 2 Cos A )² = 1²
=> Sin²A + 4 Cos²A + 4 Sin A. Cos A = 1
=> 4 Cos²A + 4 Sin A.Cos A = 1 - Sin²A
=> 4 Cos²A + 4 SinA.CosA = Cos²A
=> 4 Cos²A - Cos²A = - 4 SinA.CosA
=> 3 Cos²A = - 4 SinA.CosA .....( 1 )
Now let us take ( 2 Sin A - Cos A )², we get,
=> ( 2 Sin A - Cos A )² = 4 Sin²A + Cos²A - 4 SinA.CosA ....( 2 )
Now substituting ( 1 ) in ( 2 ) , we get,
=> ( 2 Sin A - Cos A )² = 4 Sin²A+ Cos²A + 3 Cos²A
=> ( 2 Sin A - Cos A )² = 4 Sin²A + 4 Cos²A
=> ( 2 Sin A - Cos A )² = 4 ( Sin²A + Cos²A )
=> ( 2 Sin A - Cos A )² = 4 ( 1 )
=> ( 2 Sin A - Cos A )² = 4
Taking Square root on both sides we get,
=> ( 2 Sin A - Cos A ) = √ 4
=> ( 2 Sin A - Cos A ) = 2
Hence proved !
Hey Mate ⭐⭐⭐
Here's ur answer ⤵⤵⤵
Answer=>
sinA + 2cosA=1
Squarring both sides , we get
sin 2 A + 4 cos2 A +4 sin A cos A =1
4 cos 2 A +4 sin A. cos A = 1 - sin 2 A
4 cos 2 A + 4 sin A cos A = cos 2 A
3 cos 2 A + 4 sin A cos A =0....(i)
Now, ( 2 sin A - cos A)2= 4 sin 2 A + cos 2 A -4 sin A cos A
=4 sin 2 A + cos 2 A +3 cos 2 A
= 4 (sin 2 A + cos 2 A)
=4
Thus, 2 sin A - cos A = 2
Hope it helps you! ヅ
✪ Be Brainly ✪