Math, asked by zoya0710, 11 months ago

if sinA + 2cosA = 1 then prove that 2sinA - cosA=2​

Answers

Answered by ishu51320
3

sin A + 2cosA =1

Squaring on both sides

sin square + 4 cos square + 4sin.cos =1

1-cos square + 4- 4sin square + 4sin.cos =1

4sin square + cos square - 4sin.cos= 4

(2sin - cos ) square = 2 square

Taking square root

2sin - cos =2.

Answered by Anonymous
5

Step-by-step explanation:

Let's assume that \angle A = \alpha

We have been given that,

sinA + 2cosA = 1

Therefore, we get,

 =  >  \sin( \alpha )  + 2 \cos( \alpha ) = 1

Squaring both the sides, We get

=  >  {( \sin \alpha  + 2 \cos \alpha )  }^{2}  =  {1}^{2}   \\ \\  =  >   { \sin }^{2}  \alpha  + 4 { \cos }^{2}  \alpha  + 2(2 \sin \alpha  \cos \alpha )   = 1 \\  \\  =  >   { \sin }^{2}  \alpha + 4 { \cos }^{2} \alpha  + 2 \sin(2 \alpha )   =   1  \\  \\  =  > 1 -  { \cos}^{2}  \alpha  +4  (1 - {  \sin }^{2}  \alpha ) + 4 \sin( \alpha )  \cos( \alpha )  = 1 \\  \\  =  > 4 -4 { \sin }^{2}  \alpha  -  { \cos}^{2}  \alpha  + 4 \sin( \alpha )   \cos( \alpha ) = 0  \\  \\  =  > 4 { \sin }^{2}  \alpha  +  { \cos }^{2}  \alpha    - 4 \sin( \alpha )  \cos( \alpha )  = 4 \\  \\  =  >  {(2 \sin \alpha ) }^{2} - 2(2 \sin\alpha ) ( \cos \alpha )  +  {( \cos \alpha ) }^{2}    =  {(2)}^{2}   \\  \\  =  >  {(2 \sin \alpha -  \cos \alpha  ) }^{2}  =  {2}^{2}  \\  \\  =  > 2 \sin( \alpha )  -  \cos( \alpha )  = 2

Hence, Proved.

Concept Map:-

  •  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

  •  {(x - y)}^{2}  =  {x}^{2}  - 2xy +  {y}^{2}

  •  { \sin }^{2} x +  { \cos }^{2} x = 1
Similar questions