Math, asked by khanarsalanamin0001, 9 months ago

if sina=3/4 calculate cosA and secA​

Answers

Answered by MoodyCloud
8

Given:-

  • Sin A = 3/4

⠀⠀⠀⠀⠀⠀

To find:-

  • Cos A and Sec A.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \huge \tt \: Solution

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

sin θ =  \frac{Perpendicular}{Hypotenuse}

 \implies \tt \: sin A \: =  \frac{3}{4}

⠀⠀⠀⠀⠀⠀

  • We need AB beacuse AB is base.

⠀⠀⠀⠀⠀⠀

By using Pythagoras theorem that is

☛ (Base)² + (Perpendicular)² = (Hypotenuse)²

⠀⠀⠀⠀⠀⠀

➢Base = AB = ?

➢Perpendicular = BC = 3

➢Hypotenuse = AC = 4

⠀⠀⠀⠀⠀⠀

Put the values,

⇒(AB)² + (3)² = (4)²

⇒(AB)² = (4)² - (3)²

⇒(AB)² = 16 - 9

⇒(AB)² = 7

⇒AB = √7

⠀⠀⠀⠀⠀⠀

So,

\large\bf\underline\red{Cos A}

☘ Cos θ =  \frac{Base}{Hypotenuse}

⠀⠀⠀⠀⠀⠀

➢Base = AB = √7

➢Hypotenuse = AC = 4

⠀⠀⠀⠀⠀⠀

☆ cos A = √7/4

⠀⠀⠀⠀⠀⠀

\large\bf\underline\purple{SecA}

☘ sec θ =  \frac{Hypotenuse}{Base}

⠀⠀⠀⠀⠀⠀

➢Base = AB = √7

➢Hypotenuse = AC = 4

⠀⠀⠀⠀⠀⠀

☆sec A = 4/√7

_____________________

More ratio's:-

☘ tan θ =  \frac{Perpendicular}{Base}

☘cot θ = \frac{Base}{Perpendicular}

☘ cosec θ =  \frac{Hypotenuse}{Perpendicular}

Attachments:
Similar questions