Math, asked by sachinpal8338, 1 year ago

If sinA=3/4 find the values of other trigonometry ratios

Answers

Answered by Anonymous
1

Answer:

I hope it would help you

Attachments:
Answered by Anonymous
6

Assumption

∆PQR be an right angled triangle at Q

Given

\tt{\rightarrow sinA=\dfrac{3}{4}}

As we know that :-

\tt{\rightarrow sin\theta=\dfrac{Perpendicular}{Hypotenuse}}

\tt{\rightarrow sinP=\dfrac{QR}{PR}}

\tt{\rightarrow\dfrac{QR}{PR}=\dfrac{3}{4}}

QR = 3x

Also

PR = 4x (For any positive number x)

Therefore

PQ² = PR² - QR²

= (4x)² - (3x)²

= 16x² - 9x²

= 7x²

PQ = √7x

\tt{\rightarrow cosA=\dfrac{PQ}{PR}}

\tt{\rightarrow cosA=\dfrac{\sqrt{7}x}{4x}}

\tt{\rightarrow cosA=\dfrac{\sqrt{7}}{4}}

Now,

\tt{\rightarrow tanA=\dfrac{QR}{PQ}}

\tt{\rightarrow tanA=\dfrac{3x}{\sqrt{7}x}}

\tt{\rightarrow tanA=\dfrac{3}{\sqrt{7}}}

\tt{\rightarrow tanA=\dfrac{3\sqrt{7}}{7}}

Now,

\tt{\rightarrow cosecA=\dfrac{4}{3}}

\tt{\rightarrow secA=\dfrac{4}{\sqrt{7}}\;or\;\dfrac{4\sqrt{7}}{7}}

\tt{\rightarrow cotA=\dfrac{\sqrt{7}}{3}}

\boxed{\begin{minipage}{11 cm} Fundamental Trignometric Indentities \\ \\ $\sin^{2}\theta+\cos^{2}\theta =1 \\ \\ 1+tan^{2}\theta=\sec^{2}\theta \\ \\ 1 + cot^{2}\theta=\text{cosec}^2\theta \\ \\ tan\theta =\dfrac{sin\theta}{cos\theta} \\ \\ cot\theta =\dfrac{cos\theta}{sin\theta}$\end{minipage}}

Similar questions