If sinA=3/5 and A is acute , then find sin2A
Answers
Using cos²θ= 1 - sin²Aθ
=> cos²A = 1 - (3/5)^2
=> cos²A = (25 - 9)/25
=> cos²A = 16/25
=> cosA = 4/5 { A is an acute angle, cosB can't be -ve }
From the properties of trigonometric functions :
- sin2A = 2sinAcosA
=> sin2A
=> 2sinAcosA
=> 2(3/5)(4/5)
=> 24/25
Hence the required value of sin2A is 24/25.
Question :--
- If sinA=3/5 and A is acute , then find sin2A = ?
Formula used :--
→ SinA = Perpendicular / Hypotenuse = P/H
→ CosA = Base / Hypotenuse = B/H .
→ Pythagoras theoram , P² + B² = H² .
→ Sin2A = 2*SinA*CosA
__________________________
Solution :---
Given , SinA = 3/5
→ SinA = 3/5 = P/H
we get,
→ P = 3
→ H = 5
Now, putting value in Pythagoras theoram, we get,
→ (3)² + (B)² = 5²
→ 25 - 9 = B²
→ 16 = B²
Square root both both sides we get,
→ B = 4 .
Putting this value now , we get,
→ sin@ = P/H = 3/5 .
→ cos@ = B/H = 4/5 .
______________________________
Now, putting these values in Question we get,
→ Sin2A
→ 2*SinA*CosA
→ 2*(3/5)*(4/5)
→ 24/25