Math, asked by alpulalatha3, 4 months ago

If sinA = 3/5 and coB =9/41 then the sin (A-B)​

Answers

Answered by mathdude500
0

Answer:

Correct Question:-

If sinA = 3/5 and cosB =9/41, A and B lies in Ist quadrant, then the value of sin (A-B)

Answer:-

Given :-

  • sinA = 3/5 and cosB =9/41, A and B lies in Ist quadrant.

To find :-

  • The value of sin(A - B)

Identity used:-

\bf \:★ \: sin(A - B) = sinA cosB - sinB cosA

\bf \:★ \: sin²x + cos²x = 1

\bf\ ★\:sinx =  \sqrt{1 -  {cos}^{2}x }

\bf \:★ \: cosx =  \sqrt{1 -  {sin}^{2} x}

Solution :-

\bf \: As \:  sinA = \dfrac{3}{5}

\bf \:We \:  know,  \: sin²A + cos²A = 1

\bf\implies \: {(\dfrac{3}{5} )}^{2}  +  {cos}^{2} A = 1

\bf\implies \: {cos}^{2} A = 1 - \dfrac{9}{25}

\bf\implies \: {cos}^{2} A =  \dfrac{16}{25}

\bf \:A  \: lies  \: in  \: first  \: quadrant

\bf\implies \:cosA = \dfrac{4}{5}

\bf \:As  \: cosB =  \dfrac{9}{41}

\bf \:We \:  know, sin²B + cos²B = 1

\bf \bf\implies \: {sin}^{2} B +  {(\dfrac{9}{41}) }^{2} = 1

\bf\implies \: {sin}^{2} B = 1 - \dfrac{81}{1681}

\bf\implies \: {sin}^{2} B = \dfrac{1600}{1681}

\bf \:B \:  lies \:  in \:  first \:  quadrant

\bf\implies \:sinB \:  = \dfrac{40}{41}

Now,

\bf \:sin(A - B) = sinA cosB - sinB cosA

On substituting the values of sinA, cosA, sinB, cosB, we get

\bf\implies \:sin(A - B) = \dfrac{3}{5}  \times \dfrac{9}{41}  - \dfrac{40}{41}  \times \dfrac{4}{5}

\bf\implies \:sin(A - B) = \dfrac{27 - 160}{205}

\bf\implies \:sin(A - B) =  - \dfrac{133}{205}

____________________________________________

Similar questions