If SinA =3/5 and CosB =12/13 Find the value of 1. Sin (A+B) 2. Cos (A-B)
Answers
Solution:-
Given:-
To find :-
First of All we have to Find
We know That
Now Take
We Have
Now using Pythagoras theorem
So we get
so
Now find SinB
Now using Pythagoras theorem
Now we get
We get
Put the value on
Now take
Answer:
Step-by-step explanation:
Solution:-
Given:-
\sf \to \: sinA = \dfrac{3}{5} \: \: and \: \: cosB = \dfrac{12}{13}→sinA=
5
3
andcosB=
13
12
To find :-
\begin{gathered} \sf \to \: sin(A + B) \\ \sf \to \: cos(A + B)\end{gathered}
→sin(A+B)
→cos(A+B)
First of All we have to Find
\sf \to \: sinB \: and \: \: cosA→sinBandcosA
We know That
\sf \to \: sinA = \dfrac{3}{5} = \dfrac{p}{h} \: \: and \: \: cosB = \dfrac{12}{13} = \dfrac{b}{h}→sinA=
5
3
=
h
p
andcosB=
13
12
=
h
b
Now Take
\sf \to \: sinA = \dfrac{3}{5} = \dfrac{p}{h}→sinA=
5
3
=
h
p
We Have
\sf \to \: p = 3,h = 5 \: \: and \: b \: = x→p=3,h=5andb=x
Now using Pythagoras theorem
\sf \to \: {h}^{2} = {p}^{2} + {b}^{2}→h
2
=p
2
+b
2
\sf \to \: {5}^{2} = {3}^{2} + {b}^{2}→5
2
=3
2
+b
2
\sf \to \: 25 = 9 + {b}^{2}→25=9+b
2
\sf \to \: {b}^{2} = 16→b
2
=16
\sf \to \: b = 4→b=4
So we get
\sf \to \: p = 3,h = 5 \: \: and \: b \: = 4→p=3,h=5andb=4
so
\sf \to \: cos \: A = \dfrac{4}{5}→cosA=
5
4
Now find SinB
\sf \to cosB = \dfrac{12}{13} = \dfrac{b}{h}→cosB=
13
12
=
h
b
\sf \to \: p = x,h = 13 \: \: and \: b \: = 12→p=x,h=13andb=12
Now using Pythagoras theorem
\sf \to \: {h}^{2} = {p}^{2} + {b}^{2}→h
2
=p
2
+b
2
\sf \to \: {13}^{2} = {p}^{2} + {12}^{2}→13
2
=p
2
+12
2
\sf \to \: 169 = {p}^{2} + 144→169=p
2
+144
\sf \to \: {p}^{2} = 25→p
2
=25
\sf \to \: p = 5→p=5
\sf \to \: p = 5,h = 13 \: \: and \: b \: = 12→p=5,h=13andb=12
Now we get
\sf \to \: sinB = \dfrac{5}{13}→sinB=
13
5
We get
\begin{gathered} \sf \to \: sin(A + B) = sinA cosB + cosA sinB\\ \sf \to \: cos(A + B) = cosA cosB − sinA sinB \end{gathered}
→sin(A+B)=sinAcosB+cosAsinB
→cos(A+B)=cosAcosB−sinAsinB
Put the value on
\sf \to \: sin(A + B) = sinA cosB + cosA sinB→sin(A+B)=sinAcosB+cosAsinB
\sf \to \: sinA = \dfrac{3}{5} , cos \: A = \dfrac{4}{5} \: \: and \: \: cosB = \dfrac{12}{13} , sinB = \dfrac{5}{13}→sinA=
5
3
,cosA=
5
4
andcosB=
13
12
,sinB=
13
5
\sf \to \: \dfrac{3}{5} \times \dfrac{12}{13} + \dfrac{4}{5} \times \dfrac{5}{13}→
5
3
×
13
12
+
5
4
×
13
5
\sf \to \: \dfrac{36}{65} + \dfrac{20}{65}→
65
36
+
65
20
\sf \to \: \dfrac{56}{65}→
65
56
Now take
\sf \to \: cos(A + B) = cosA cosB − sinA sinB →cos(A+B)=cosAcosB−sinAsinB
\sf \to \: sinA = \dfrac{3}{5} , cos \: A = \dfrac{4}{5} \: \: and \: \: cosB = \dfrac{12}{13} , sinB = \dfrac{5}{13}→sinA=
5
3
,cosA=
5
4
andcosB=
13
12
,sinB=
13
5
\sf \to \: \dfrac{4}{5} \times \dfrac{12}{13} + \dfrac{3}{5} \times \dfrac{5}{13}→
5
4
×
13
12
+
5
3
×
13
5
\sf \to \: \dfrac{48}{65} + \dfrac{15}{65}→
65
48
+
65
15
\sf \to \: \dfrac{63}{65}→
65
63