Math, asked by sakshisharma30966, 9 months ago

if sinA = 3/5 , prove that tanA + 1/cosA = 2 or -2 ? ​

Answers

Answered by Anonymous
7

Explanation:-

 \rm \:  \sin( A)  =  \frac{3}{5}

We have to prove

 \rm \:  \tan(A)  +  \frac{1}{ \cos(A) }  = 2 \:  \: or \:  \:  - 2

\rm \:  \sin( A)  =  \frac{3}{5}  =  \frac{p}{h}

 \rm \: p = 3 \:  \:  \:  \: h = 5 \:  \: and \:  \: b = x

Using Pythagoras theorem

 \rm \:  {h}^{2}   =  {p}^{2}  +  {b}^{2}

 \rm \: (5) {}^{2}  = (3) {}^{2}  +  {x}^{2}

 \rm \: 25 = 9 + x {}^{2}

 \rm \: 25 - 9 = x {}^{2}

 \rm \:  x {}^{2} = 16

 \rm \: x = 4

 \rm \: b \:  = 4

Some trigonometry ratio

 \rm \:  \tan(A)  =  \frac{p}{b}  =  \frac{3}{4}

 \rm \:  \cos(A)  =  \frac{b}{h}  =  \frac{4}{5}

We have to prove

 \rm \:  \tan(A)  +  \frac{1}{ \cos(A) }  = 2 \:  \: or \:  \:  - 2

 \rm \:  \frac{3}{4}  +  \frac{1}{ \frac{4}{5} }  = 2

 \rm \frac{3}{4}  +  \frac{5}{4}  = 2

 \rm \:  \frac{8}{4}  = 2

 \rm \: 2 = 2

Hence proved

Similar questions