Math, asked by priyanshu198090, 1 year ago

If sinA/3= sinB/4=1/5 and A, B are angles
in the second quadrant then prove that
4cosA + 3cosB = -5.​

Answers

Answered by MaheswariS
21

Answer:

4\:cosA+3\:cosB=5

Step-by-step explanation:

Given:

\frac{sinA}{3}=\frac{sinB}{4}=\frac{1}{5}

\implies\:\frac{sinA}{3}=\frac{1}{5}

\implies\:sinA=\frac{3}{5}

similarly,

\implies\:sinB=\frac{4}{5}

Now,

cos^2A=1-sin^2A

cos^2A=1-(\frac{3}{5})^2

\implies\:cos^2A=1-\frac{9}{25}

\implies\:cos^2A=\frac{25-9}{25}

\implies\:cos^2A=\frac{16}{25}

\implies\:cosA=\pm\frac{4}{5}

since A lies in second quadrant,

cosA=\frac{-4}{5}

cos^2B=1-sin^2B

cos^2B=1-(\frac{4}{5})^2

\implies\:cos^2B=1-\frac{16}{25}

\implies\:cos^2B=\frac{25-16}{25}

\implies\:cos^2B=\frac{9}{25}

\implies\:cosB=\pm\frac{3}{5}

since B lies in second quadrant,

cosA=\frac{-3}{5}

4\:cosA+3\:cosB

=4(\frac{-4}{5})+3(\frac{-3}{5})

=\frac{-16}{5}-\frac{9}{5}

=\frac{-16-9}{5}

=\frac{-25}{5}

=-5

\implies\:4\:cosA+3\:cosB=5

Similar questions