Math, asked by princekhatiwada9, 3 days ago

If sinA=4/5 and sinB=3/7 .
Find sin(A+B)

Answers

Answered by mallelakrishnaiah93
0

Answer:

answer is 7/12

Step-by-step explanation:

4/5+3/7

7/12

This only the answer for sin(A+B)

Answered by monishgarg1005
0

Given,

sinA=4/5 and sinB=3/7

To Find,

sin(A+B)

Solution,

sin(A+B) = sinAcosB + sinBcosA

 \sin {}^{2} (x) +  \cos {}^{2} (x)   = 1

cosA =

 \sqrt{1 -  \sin { {}^{2} }(a) }

cosA =

 \frac{3}{5}

cosB =

 \sqrt{1 -  \sin {}^{2} (b {}^{} ) }

cosB =

 \frac{ \sqrt{40} }{7}

Therefore, Sin(A+B) =

 (\frac{4}{5}  \times  \frac{ \sqrt{40} }{7} \:  )+  (\frac{3}{7}   \times  \frac{3}{5} )

Hence, sin(A+B) =

 \frac{8 \sqrt{10} + 9 }{35}

So the final answer comes out be

 \frac{8 \sqrt{10} + 9 }{35}

Similar questions