If sinA = 4/5, find other trigonometric ratios
Answers
Answered by
4
Answer:
If sin A =4/5,then perpendicular =4 and hypotenuse =5 as sin =perpendicular/hypotenuse
Explanation:
The base=3
- Cosa=b/h=3/5
- tana=p/b=4/3
- coseca=h/p=5/4
- seca=h/b=5/3
- cota=b/p=3/4
Answered by
92
To find :
- we need to find other Trignometric ratios.
Solution :
- Sin A = 4/5
We know that,
›› sin A = Perpendicular/Hypotenuse
So,
- ›› Perpendicular = 4
- ›› Hypotenuse = 5
By Pythagoras theorem : -
›› Hypotenuse² = base² + perpendicular ²
›› 5² = b² + 4²
›› 25 = b² + 16
›› 25 - 16 = b²
›› 9 = b²
›› base = √9
›› Base = 3
Now,
- Cos A = Base/hypotenuse
›› Cos A = 3/5
- Tan A = perpendicular/base
›› Tan A = 4/3
- Cot A = base/perpendicular
›› Cot A = 3/4
- Cosec A = hypotenuse/perpendicular
›› Cosec A = 5/4
- Sec A = Hypotenuse/base
›› Sec A = 5/3
━━━━━━━━━━━━━━━━━━━━━━━━━
Similar questions