If sinA=a/b find secA+tanA in terms of a and b
Answers
Answered by
2
Answer:
sinA=a/b
cosA= √(1-sin²A)
cosA= √(1-a²/b²) = √(b²-a²)/b (denominator is b as √b²=b)
secA = 1/cosA = b/√(b²-a²)
tanA = sinA/cosA = a/b×b/√(b²-a²)
= a/√(b²-a²)
secA+tanA = b/√(b²-a²) + a/√(b²-a²)
= (b+a)/√(b+a)(b-a)
on rationalising, we get,
= √(b+a)/(b-a)
Similar questions