Math, asked by Astrum, 9 months ago

if sinA and cosA are roots of ax²+bx+c=0 then, prove a²+2ac=b²​

Answers

Answered by Cosmique
16

Given :

  • sin A and cos A are roots of equation ax² + bx + c = 0

To prove :

  • a² + 2 ac = b²

Knowledge required :

For a quadratic equation of the form ax² + bx + c = 0

\red{\bullet}\;\sf{sum\:of\:zeroes=\dfrac{-(coefficient\:of\;x)}{coefficient\;of\:x^2}=\dfrac{-b}{a}}

\red{\bullet}\;\sf{product\:of\:zeroes=\dfrac{constant\:term}{coefficient\;of\:x^2}=\dfrac{c}{a}}

Solution :

Since, sin A and cos A are zeroes of ax² + bx + c = 0

so,

\red{\longrightarrow}\sf{sin\;A+cos\;A=\dfrac{-b}{a}\;\;\;\;\;equation (1)}

and,

\red{\longrightarrow}\sf{sin\;A\;cos\;A=\dfrac{c}{a}\;\;\;\;\;\;\;equation(2)}

Now,

Using algebraic identity

( m + n )² = m² + n²  + 2 m n

\red{\longrightarrow}\sf{(sin\;A+cos\;A)^2=sin^2A+cos^2A+2\;sin\;A\;cos\;A}

using equation (1) and equation (2)

\red{\longrightarrow}\sf{\left(\dfrac{-b}{a}\right)^2=sin^2A+cos^2A+2\left(\;\dfrac{c}{a}\;\right)}

using trigonometric identity

sin²Ф + cos²Ф = 1

\red{\longrightarrow}\sf{\left(\dfrac{-b}{a}\right)^2= (1) +2\left(\;\dfrac{c}{a}\;\right)}

\red{\longrightarrow}\sf{\dfrac{b^2}{a^2}= 1 +\dfrac{2c}{a}}

\red{\longrightarrow}\sf{\dfrac{b^2}{a^2}=\dfrac{a+2c}{a}}

\red{\longrightarrow}\sf{\dfrac{b^2}{a}=a+2c}

\overbrace{\underbrace{\boxed{\red{\longrightarrow}\sf{b^2=a^2+2ac}}}}

PROVED .

Answered by SaI20065
75

♡REFER THIS ATTACHMENT♡

Attachments:
Similar questions