If sinA=asinB and tanA=btanB then prove that cos^2A=a^2-1÷b^2-1
Answers
Answered by
1
a = sin A / sin B
= A / B
b = tan A / tan B
= A / B
Now we compute RHS
- 1 / - 1
{[A - B]/ [A - A]} B/ B
On simplification,
{[A - B]/ [A - A]} B
Now we get the numerator and denominator to the same form.
sin(A+B)sin(A-B) ----> denominator part
sin A + sin B ------> numerator part
aB ------> numerator multiplicant
On simplification, we get
A
Similar questions