Math, asked by adarshshajan2004, 11 months ago

If sinA=asinB and tanA=btanB then prove that cos^2A=a^2-1÷b^2-1

Answers

Answered by Xosmos
1

a = sin A / sin B

a^{2} = sin^{2}A / sin^{2}B

b = tan A / tan B

b^{2} = tan^{2}A / tan^{2}B

Now we compute RHS

a^{2} - 1 / b^{2} - 1

{[sin^{2}A -  sin^{2}B]/ [tan^{2}A -  tan^{2}A]} tan^{2}B/ sin^{2}B

On simplification,

{[sin^{2}A -  sin^{2}B]/ [tan^{2}A -  tan^{2}A]} cos^{2}B

Now we get the numerator and denominator to the same form.

sin(A+B)sin(A-B) ----> denominator part

sin A + sin B ------> numerator part

cos^{2}acos^{4}B ------> numerator multiplicant

On simplification, we get

cos^{2}A

Similar questions