If sinA +cos A =p and secA +cosec A =q then prove that q(p²-1)=2
Answers
Answered by
12
P= sinA + cosA => p^2
= (sinA +cosA)^2
= sin^2 a + cos^2 a + 2sinA cosA
= 1+ 2sinA cosA now p^2-1
= 2sinA cosA now q(p^2-1)
= (secA + coseca)2sinA cosA
= [1/cosA + 1/sinA ] 2sinA cosA
= (sinA + cosA)2
=2(sinA+ cosA)
= 2 p = RHS proved
= (sinA +cosA)^2
= sin^2 a + cos^2 a + 2sinA cosA
= 1+ 2sinA cosA now p^2-1
= 2sinA cosA now q(p^2-1)
= (secA + coseca)2sinA cosA
= [1/cosA + 1/sinA ] 2sinA cosA
= (sinA + cosA)2
=2(sinA+ cosA)
= 2 p = RHS proved
Answered by
2
Answer:
Step-by-step explanation:
Let us put the real values of p and q respectively...
We know that seca =1/cos a & cosec a = 1/cos a
Now.....1/sin a + 1/cos a{ sin2a + cos2a - 1 + 2sinacosa}
( By squaring the term)
Cosa + Sina * 2
= 2sina +cosa
Hope it helps
Similar questions