Math, asked by meghakatiyar1, 1 year ago

If sinA + cos2A = 1/2 and cosA+sin2A = 1/3, then find the value of sin3A.​

Answers

Answered by Anonymous
8

Answer:

it's your answer. ..........

Attachments:
Answered by RvChaudharY50
18

\huge\underline\blue{\sf Given:}

1) sinA + cos2A = 1/2

2) cosA+sin2A = 1/3

\color {red}\huge\bold\star\underline\mathcal{Question:-}

sin3A = ???

\rule{200}{4}

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\:Answer}}}}}}}}}}

sinA + cos2A = 1/2 ---------------- (Equation 1)

cosA+ sin2A = 1/3 ----------------( Equation 2)

Squaring both sides and adding both equations we get,

(sin²A+cos²2A+2sinA*cos2A)+(cos²A+sin²2A+2cosA*sin2A) = (1/4) + (1/9)

Re-arranging the equations :-

(sin²A+cos²A)+(sin²2A+cos²2A)+2(sinA*cos2A+cosA*sin2A) = \huge{\frac{</strong><strong>1</strong><strong>3</strong><strong>}{</strong><strong>3</strong><strong>6</strong><strong>}}

we know that,

sin²A+cos²A = 1

sinA*cosB+cosA*sinB = sin(A+B)

using both we get,

1 + 1 + 2sin(A+2A) = \huge{\frac{13}{36}}

2 + 2sin3A = \huge{\frac{13}{36}}

2sin3A = \huge{\frac{13}{36}} - 2

2sin3A = \huge{\frac{</strong><strong>(</strong><strong>-</strong><strong>5</strong><strong>9</strong><strong>)</strong><strong>}{36}}

sin3A = \huge{\frac{</strong><strong>(</strong><strong>-59</strong><strong>)</strong><strong>}{</strong><strong>7</strong><strong>2</strong><strong>}}

\rule{200}{4}

Similar questions