Math, asked by vinat9anyasri, 1 year ago

If sinA - cosA=1, find value of sin^4A+cos^4A

Answers

Answered by ARoy
9
sinA-cosA=1
Squaring both sides,
(sinA-cosA)²=1
or, sin²A-2sinAcosA+cos²A=1
or, sin²A+cos²A-2sinAcosA=1
or, 1-2sinAcosA=1
or, -2sinAcosA=1-1
or, sinAcosA=0 --------------------(1)
sin⁴A+cos⁴A
=(sin²A)²+(cos²A)²
=(sin²A+cos²A)²-2sin²Acos²A
=1²-2(sinAcosA)²
=1-2(0)² [Using (1)]
=1 Ans.

Answered by wifilethbridge
4

Answer:

sin^4A+cos^4A =1

Step-by-step explanation:

We are given that sinA-cosA=1

Squaring both sides,

(sinA-cosA)^2=1

Identity : (a-b)^2= a^2+b^2-2ab

sin^2A-2sinAcosA+cos^2A=1

Since we know that Sin^2A+Cos^2A=1

1-2sinAcosA=1

-2sinAcosA=0

sinAcosA=0

We are supposed to find sin^4A+cos^4A

(sin^2A)^2+(cos^2A)^2

Using identity : a^2+b^2+2ab = (a+b)^2

=(sin^2A+cos^2A)^2-2sin^2Acos^2A

=1^2-2(sinAcosA)^2

=1-2(0)^2

=1

Hence sin^4A+cos^4A =1

Similar questions