If sinA - cosA=1, find value of sin^4A+cos^4A
Answers
Answered by
9
sinA-cosA=1
Squaring both sides,
(sinA-cosA)²=1
or, sin²A-2sinAcosA+cos²A=1
or, sin²A+cos²A-2sinAcosA=1
or, 1-2sinAcosA=1
or, -2sinAcosA=1-1
or, sinAcosA=0 --------------------(1)
sin⁴A+cos⁴A
=(sin²A)²+(cos²A)²
=(sin²A+cos²A)²-2sin²Acos²A
=1²-2(sinAcosA)²
=1-2(0)² [Using (1)]
=1 Ans.
Squaring both sides,
(sinA-cosA)²=1
or, sin²A-2sinAcosA+cos²A=1
or, sin²A+cos²A-2sinAcosA=1
or, 1-2sinAcosA=1
or, -2sinAcosA=1-1
or, sinAcosA=0 --------------------(1)
sin⁴A+cos⁴A
=(sin²A)²+(cos²A)²
=(sin²A+cos²A)²-2sin²Acos²A
=1²-2(sinAcosA)²
=1-2(0)² [Using (1)]
=1 Ans.
Answered by
4
Answer:
Step-by-step explanation:
We are given that
Squaring both sides,
Identity :
Since we know that
We are supposed to find
Using identity :
=
=
=
=1
Hence
Similar questions