Math, asked by shabanatabasum790, 28 days ago

If sinA-cosA=1, Prove that CosA+SinA=+_1

Answers

Answered by abhi569
21

⇒ sinA - cosA = 1

       Square on both sides:

⇒ (sinA - cosA)² = 1²

⇒ sin²A + cos²A - 2sinAcosA = 1

⇒ 1 - 2sinAcosA = 1

⇒ -2sinAcosA = 0  

       ∴ 2sinAcosA = 0   [also]

Therefore,   using sin²A + cos²A = 1

     Adding 2sinAcosA to both sides:

⇒ sin²A + cos²A + 2sinAcosA = 1 + 2sinAcosA

⇒ (sinA + cosA)² = 1 + 0         [2sinAcosA = 0]

⇒ (sinA + cosA)² = 1

⇒ sinA + cosA =  ± 1

      *better to be seen through browser/desktop-mode.

Answered by kinzal
17

Given :

  • Sin A - Cos A

To Find :

  • Prove that Cos A + Sin A = ± 1

Explanation :

  •  \sf Sin \: \: A - Cos \: \:  A = 1 \\

Now, Take Square From Both Sides

  •  \sf \red{ (Sin \: \:  A - Cos  \: \: A )² } = \green{ (1)²}\\

  •  \sf \red{(Sin \: \:  A - Cos \: \:  A )²} = \green {1 } \\

[ We know that, Sin² A + Cos ² A = 1 ]

So, we can put this value

  •  \sf \red{(Sin \: \:  A - Cos \: \:  A )²} = \green{Sin²  \: \: A + Cos²  \: \: A } \\

  •  \sf \red{Sin²  \: \: A + Cos²  \: \: A - 2 × Sin \: \:  A × Cos \: \:  A } = \green{ Sin²  \: \: A + Cos²  \: \: A} \\

  •  \sf \red{ Sin² \: \: A + Cos² \: \:  A } = \green{Sin²  \: \: A + Cos² \: \: A + 2 × Sin  \: \: A × Cos \: \: A } \\

  •  \sf \red{Sin² \: \: A + Cos²  \: \: A}  = \green{ (Sin  \: \: A + Cos  \: \: A )² } \\

  •  \sf \red{1 } = \green{(Sin \: \:  A + Cos  \: \: A )²} \\

  •  \sf \red{ (Sin \: \:  A + Cos  \: \: A )²} = \green{1} \\

  •  \sf \red{(Sin  \: \:  A + Cos  \: \:  A )} = \green{ ± \sqrt{1}} \\

  •  \sf \red{Cos \: \:  A + Sin  \: \:  A } = \green{± 1} \\

I hope it helps you ❤️✔️

Similar questions