If sinA-cosA=1, Prove that CosA+SinA=+_1
Answers
Answered by
21
⇒ sinA - cosA = 1
Square on both sides:
⇒ (sinA - cosA)² = 1²
⇒ sin²A + cos²A - 2sinAcosA = 1
⇒ 1 - 2sinAcosA = 1
⇒ -2sinAcosA = 0
∴ 2sinAcosA = 0 [also]
Therefore, using sin²A + cos²A = 1
Adding 2sinAcosA to both sides:
⇒ sin²A + cos²A + 2sinAcosA = 1 + 2sinAcosA
⇒ (sinA + cosA)² = 1 + 0 [2sinAcosA = 0]
⇒ (sinA + cosA)² = 1
⇒ sinA + cosA = ± 1
*better to be seen through browser/desktop-mode.
Answered by
17
Given :
- Sin A - Cos A
To Find :
- Prove that Cos A + Sin A = ± 1
Explanation :
Now, Take Square From Both Sides
[ We know that, Sin² A + Cos ² A = 1 ]
So, we can put this value
I hope it helps you ❤️✔️
Similar questions