Math, asked by CarrotRabbit, 9 months ago

If sinA+cosA = /2 cos A Then wt is SinA - cos A

Answers

Answered by rudra1981sharma
0

Answer:

If cosA+sinA= √2cosA, then what is cosA-sinA?

Lean Six Sigma Green Belt certification by Varsigma.

If you want answer in terms of trigonometric function,

cosA+sinA=2–√cosA

Squaring,

cos2A+sin2A+2cosAsinA=2cos2A

Using cos2A=1−sin2A

1−sin2A+sin2A+2cosAsinA=2(1−sin2A)

1+2cosAsinA=2−2sin2A

2cosAsinA=1−2sin2A

1−2cosAsinA=2sin2A

cos2A+sin2A−2cosAsinA=2sin2A

(cosA−sinA)2=2sin2A

cosA−sinA=±2–√sinA

If you want answer in terms of the exact values,

cosA+sinA=2–√cosA

cosAcosA+sinAcosA=2–√

1+tanA=2–√

tanA=2–√−1

A=tan−1(2–√−1)=22.5°orπ8 radians

So,

cosA−sinA=cos22.5°−sin22.5°≈0.9238795325−0.3826834324≈0.5411961001 Please mark the answer as the branliest

Answered by Anonymous
9

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given that
  • \sin\theta + \cos\theta = \sqrt{2}\cos\theta

To Find:

  • We have to find the value of
  • \sin\theta -\cos\theta

Solution:

We have been given that

 \sin\theta + \cos\theta = \sqrt{2}\cos\theta

 \sin\theta = \sqrt{2}\cos\theta - \cos\theta

 \sin\theta = \cos\theta(\sqrt{2} - 1)

______________________________

Multiplying by ( \sqrt{2} + 1) on Both sides

 \sin\theta(\sqrt{2} + 1) = \cos\theta(\sqrt{2} -1)(\sqrt{2} +1)

______________________________

Using [ ( a - b )( a + b ) = a² - b² ]

 \sin\theta(\sqrt{2}+1) = \cos\theta[\: {(\sqrt{2})}^{2} - {(1)}^{2}\:]

 \sin\theta(\sqrt{2} +1) = \cos\theta(2-1)

 \sqrt{2}\sin\theta + \sin\theta = \cos\theta

 \cos\theta - \sin\theta = \sqrt{2}\sin\theta

 \sin\theta -  \cos\theta = ( - \sqrt{2}\sin\theta)

Hence  \sin\theta -  \cos\theta = ( - \sqrt{2}\sin\theta)

______________________________

\boxed{</p><p></p><p>\begin{minipage}{6 cm}</p><p></p><p>Fundamental Trigonometric Identities \\ \\</p><p></p><p>$\sin^2\theta + \cos^2\theta=1 \\ \\</p><p></p><p>1+\tan^2\theta = \sec^2\theta \\ \\</p><p></p><p>1+\cot^2\theta = \text{cosec}^2 \, \theta$</p><p></p><p>\end{minipage}</p><p>}

_________________________

Similar questions