Math, asked by rompy1938, 1 year ago

If sinA+cosA = √2 sin(90–A), then obtain the value of cotA.

Answers

Answered by Amg1
12
HELLO FRIEND ,

HERE IS YOUR ANSWER,

we can write, sin(90°-A) = cosA

therefore,

SinA + cosA = 2^(1/2)cosA
SinA. = [2^(1/2)-1]cosA
cotA. = root2 + 1

I HOPE YOU WILL UNDERSTAND .......!!!!!!!!!
Answered by abhi569
42

 \sin \: A +  \cos A =  \sqrt{2}  \sin(90 - A)  \\  \\  \\  =  >  \sin \: A +  \cos \: A =  \sqrt{2}  \cos \: A \\  \\  =  > \frac{ \sin \: A +  \cos \: A }{ \cos A}  =  \sqrt{2}  \\  \\  \\  =  >   \frac{ \sin \: A }{ \cos \: A }  + 1 =  \sqrt{2}  \\  \\  \\   = >  \tan \: A =  \sqrt{2}  - 1 \\  \\


Hence,


 \cot \: A =  \frac{1}{ \tan \: A }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (as \: we \: know \: ) \\  \\  \\   = >  \cot \: A =  \frac{1}{ \sqrt{2} - 1 }  \\  \\  \\  =  >  \cot \: A =  \frac{ \sqrt{2 } + 1 }{( \sqrt{2} - 1)( \sqrt{2}  + 1) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (by \: rationalazing) \\  \\  \\  =  >  \cot \: A =  \frac{ \sqrt{2}  + 1}{2 - 1}  \\  \\  \\  =  >  \cot \: A =  \sqrt{2}  + 1

Prakhar2908: Great answer bhaiya.
abhi569: (-:
Similar questions