Math, asked by cykablyat69, 7 months ago

If sinA + cosA = √3
find tanA + cotA​

Answers

Answered by AryanRoy03
1

Answer:

answer is 1

Step-by-step explanation:

SinA+CosA=√3

squaring both side

(SinA+CosA)^2=3

(SinA)^2+(CosA)^2 + 2SinACosA = 3

Since (SinA)^2+(CosA)^2=1

2SinACosA = 2

SinACosA=1

now,

tanA + cotA = 1

SinA/CosA + CosA/SinA = 1

((SinA)^2+(CosA)^2)/SinACosA =1

1/SinACosA =1

SinACosA =1

hope it helps

Answered by sandy1816
0

sinA+cosA = √3

squaring both sides

(sinA + cosA)² = 3

1+2sinAcosA = 3

2sinAcosA = 2

sinAcosA = 1

Now

tanA + cotA

=1/sinAcosA

=1/1

=1

Similar questions