if sinA+cosA=√3 then prove tanA+cotA=1
Answers
Answered by
1
Answer:
Step 1.
SinA+CosA=√3
(SinA+CosA)^2=3
(SinA)^2+(CosA)^2 + 2SinACosA = 3
Since (SinA)^2+(CosA)^2=1
2SinACosA = 2
SinACosA=1
Step 2.
tanA + cotA = 1
SinA/CosA + CosA/SinA = 1
((SinA)^2+(CosA)^2)/SinACosA =1
1/SinACosA =1
SinACosA =1 Same result as Step 1.
Answered by
1
sinA+cosA = √3
squaring both sides
(sinA + cosA)² = 3
1+2sinAcosA = 3
2sinAcosA = 2
sinAcosA = 1
Now
tanA + cotA
=sinA/cosA + cosA/sinA
=sin²A+cos²A/sinAcosA
=1/sinAcosA
=1/1
=1
Similar questions