Math, asked by dharmamohan16, 11 months ago

if sinA+cosA=√3 then prove that tanA + cotA=1 ​

Answers

Answered by Anonymous
6

Solution :

Given :

sinA + cosA = √3

Sqaring on both sides

⇒ (sinA + cosA)² = (√3)²

⇒ sin²A + cos²A + 2sinA.cosA = 3

[ Because (a + b)² = a² + b² + 2ab ]

⇒ 1 + 2sinA.cosA = 3

[ Because sin²A + cos²A = 1 ]

⇒ 2sinA.cosA = 3 - 1

⇒ 2sinA.cosA = 2

⇒ sinA.cosA = 2/2 = 1

Now, tanA + cotA

 \rm =  \dfrac{sinA}{cosA}  +   \dfrac{cosA}{sinA}

[ Because tanA = sinA/cosA and cotA = cosA/sinA ]

Taking LCM

 \rm =  \dfrac{sinA( sinA) +cos A(cosA)}{sinA.cosA}

 \rm =  \dfrac{sin^{2} A+cos^{2}  A}{sinA.cosA}

 \rm =  \dfrac{1}{sinA.cosA}

[ Because sin²A + cos²A = 1 ]

 \rm =  \dfrac{1}{1}

[ Proved sinA.cosA = 1]

 \rm =  1

i.e tanA + cotA = 1

Hence proved.

Answered by RvChaudharY50
12

Given :----

  • SinA + cosA = √3

Prove :-----

  • tanA + cotA = 1

Formula used :----

  • (a+b)² = a² + b² + 2ab
  • sin²A + cos²A = 1
  • tan A = sinA/cosA
  • cot A = cosA /sinA

Solution :------

Sin A + cos A = √3

squaring both sides we get, ,

(sinA + cosA)² = (√3)²

using (a+b)² = a² + b² + 2ab now, in LHS,

sin²A + cos²A + 2sincosA = 3

using sin²A + cos²A = 1 now , we get,

→ 1 + 2 sinAcosA = 3

taking 1 , RHS we get,

→ 2 sinAcosA = 3-1

→ sinAcosA = 2/2 = 1 ------------------------------- Equation(1)

Now, solving tanA + cotA = 1 by putting value of them in terms of sinA , cos A we get,

 \frac{ \sin(a) }{ \cos(a) }  +   \frac{ \cos(a) }{ \sin(a) }  = 1 \\  \\ taking \: lcm \: of \: denominator \\  \\  \\  \frac{ \sin^{2} (a) +  \cos^{2} (a)  }{\cos(a)\sin(a)} = 1 \\  \\ putting \: value \: of \: equation \: 1 \: in \: denominator \\ and \: formula \: in \: numerator \: we \: get \\  \\  \frac{1}{1}  = 1 \\  \\ 1 = 1

Hence , proved .....

Similar questions