if sinA+cosA=√3 then prove that tanA + cotA=1
Answers
Solution :
Given :
sinA + cosA = √3
Sqaring on both sides
⇒ (sinA + cosA)² = (√3)²
⇒ sin²A + cos²A + 2sinA.cosA = 3
[ Because (a + b)² = a² + b² + 2ab ]
⇒ 1 + 2sinA.cosA = 3
[ Because sin²A + cos²A = 1 ]
⇒ 2sinA.cosA = 3 - 1
⇒ 2sinA.cosA = 2
⇒ sinA.cosA = 2/2 = 1
Now, tanA + cotA
[ Because tanA = sinA/cosA and cotA = cosA/sinA ]
Taking LCM
[ Because sin²A + cos²A = 1 ]
[ Proved sinA.cosA = 1]
i.e tanA + cotA = 1
Hence proved.
Given :----
- SinA + cosA = √3
Prove :-----
- tanA + cotA = 1
Formula used :----
- (a+b)² = a² + b² + 2ab
- sin²A + cos²A = 1
- tan A = sinA/cosA
- cot A = cosA /sinA
Solution :------
Sin A + cos A = √3
squaring both sides we get, ,
(sinA + cosA)² = (√3)²
using (a+b)² = a² + b² + 2ab now, in LHS,
sin²A + cos²A + 2sincosA = 3
using sin²A + cos²A = 1 now , we get,
→ 1 + 2 sinAcosA = 3
taking 1 , RHS we get,
→ 2 sinAcosA = 3-1
→ sinAcosA = 2/2 = 1 ------------------------------- Equation(1)
Now, solving tanA + cotA = 1 by putting value of them in terms of sinA , cos A we get,
Hence , proved .....