If sinA+cosA=√3 then prove that tanA+cotA=1
Answers
Answered by
0
Answer:
LHS :
tan A + Cot A
= Sin A / CosA + Cos A / SinA
= Sin^2 A + Cos^A / Cos A × Sin A ( Taking LCM)
= ( SinA + Cos A )^2 - 2 ( Sin A × Cos A ) / Sin A × Cos A [ ( a + b )^2 - 2ab = a^2 + b^2 ]
= ( Root over 3 )^2 - 2 ( Sin A Cos A ) / Sin A × Cos A
= 3 - 2
= 1
Attachments:
Answered by
0
sinA+cosA = √3
squaring both sides
(sinA + cosA)² = 3
1+2sinAcosA = 3
2sinAcosA = 2
sinAcosA = 1
Now
tanA + cotA
=1/sinAcosA
=1/1
=1
Similar questions