Math, asked by proxzar, 5 months ago

if sinA + cosA = root 2 sinA then value of tanA is if A is not equal to 90°​

Answers

Answered by vipashyana1
0

Answer:

tanA =  \sqrt{2}  + 1

Step by step explanation:

sinA+cosA= \sqrt{2} sinA  \\ </p><p>cosA= \sqrt{2} sinA-sinA \\ </p><p>cosA=sinA( \sqrt{2} -1) \\ </p><p> \frac{cosA}{sinA} = \sqrt{2} -1 \\ </p><p> \frac{sinA}{cosA}  =  \frac{1}{ \sqrt{2} - 1 }  \\ </p><p>tanA= \frac{1}{ \sqrt{2}  - 1} \times  \frac{ \sqrt{2}  + 1}{ \sqrt{2 } + 1 }   \\ tanA =  \frac{ \sqrt{2} + 1 }{ {( \sqrt{2} )}^{2}  -  {(1)}^{2} }  \\ tanA =  \frac{ \sqrt{2} + 1 }{2 - 1}  \\ tanA =  \frac{ \sqrt{2} + 1 }{1}  \\ tanA =  \sqrt{2}  + 1

Similar questions