Math, asked by kartikKS, 11 months ago

if sinA + cosA = root3 , then prove that tanA + cot A = 1

Answers

Answered by Tejussardana
2

Answer:

Step-by-step explanation:

SinA + cosA = √3

Squaring on both sides we get,

(SinA + cosA)² = (√3)²

Sin²A + cos²A +2sinAcosA = 3

1 + 2sinAcosA = 3

2sinAcosA = 3-1

SinAcosA = 2/2

sinAcosA = 1..............(1)

tanA+cotA = 1

sinA/cosA + cosA/sinA = 1

sin²A + cos²A /sinAcosA = 1

1/sinAcosA = 1

sinAcosA = 1............(2)

eq (1) = eq(2)

thus tanA + cotA = 1

Answered by ajayram2005
0

Answer:

very easy

Step-by-step explanation:

SinA + cosA = √3

Squaring on both sides we get,

(SinA + cosA)² = (√3)²

Sin²A + cos²A +2sinAcosA = 3

1 + 2sinAcosA = 3

2sinAcosA = 3-1

SinAcosA = 2/2

sinAcosA = 1..............(1)

tanA+cotA = 1

sinA/cosA + cosA/sinA = 1

sin²A + cos²A /sinAcosA = 1

1/sinAcosA = 1

sinAcosA = 1............(2)

eq (1) = eq(2)

thus tanA + cotA =1

mark me as the brainlyist

Similar questions