Math, asked by mozocreation4546, 1 year ago

if sina cosa tana are in gp then (cota)^6-(cota)^2 is

Answers

Answered by jsvigneshbabu83
0
Let angle A be 'x'

Gn that

 \sin(x)  \:  \:  \cos(x)  \:  \:  \:  \tan(x)  \:  \:  \: are \: in \: gp
Therefore,

 \frac{ \cos(x) }{ \sin(x) }  =   \frac{ \tan(x) }{ \cos(x) }
since it's common ratio 'r' is constant

ie
 \tan(x)  =  \frac{ \tan(x) }{ \cos(x) }
ie
 \cos(x)  = 1
》 x = 0° ( cos 0° = 1)

Therefore

 { \cot(x) }^{6}  -  { \cot(x) }^{2}  =  { \cot(0) }^{6}  -  { \cot(x) }^{2}

Similar questions