If sinA+cosA+tanA+secA+cosecA+cotA=7, find value of sinA+cosA.
Answers
Answered by
0
sinA+cosA+tanA+secA+cosecA+cotA=7
tanA+secA+cosecA+CotA = sinA/cosA+1/cosA+1/sinA+cosA/sinA
=1+sinA/cosA+1+cosA/sinA
=sinA+sin^2A+cosA+cos^2A/sinAcosA
=1+sinA+cosA/sinAcosA
=sinA+cosA+1+sinA+cosA/sinAcosA=7
=sin^2AcosA+sinAcos^2A+1+sinA+cosA=7sinAcosA
...................
so, this is ur answer
please MARK as BRAINLIST answer
Similar questions