Math, asked by shakjaw, 9 months ago

If sinA+cosA+tanA+secA+cosecA+cotA=7, find value of sinA+cosA.

Answers

Answered by anu012
0

sinA+cosA+tanA+secA+cosecA+cotA=7

tanA+secA+cosecA+CotA = sinA/cosA+1/cosA+1/sinA+cosA/sinA

=1+sinA/cosA+1+cosA/sinA

=sinA+sin^2A+cosA+cos^2A/sinAcosA

=1+sinA+cosA/sinAcosA

=sinA+cosA+1+sinA+cosA/sinAcosA=7

=sin^2AcosA+sinAcos^2A+1+sinA+cosA=7sinAcosA

...................

so, this is ur answer

please MARK as BRAINLIST answer

Similar questions