If sinA=cosA then find tan2A
Answers
Answered by
2
We'll factorize the expression sina + cosa = 1 by cos a:
cos a*(sina/cosa + 1) = 1
We'll divide both sides by cos a:
sin a/cos a + 1= 1/cos a
tg a + 1= 1/cos a
tg a= 1/cos a - 1
But tg 2a could be written:
tg 2a=tg (a+a)=(tg a+ tga)/(1-(tga)^2)
tg 2a= 2tga/(1-(tga)^2)
tg 2a=2(1/cosa - 1)/[1-(1/cosa)+1][1+ (1/cosa)-1]
tg 2a= 2[(1-cos a)/cosa ]/[(2 - 1/cosa)(1/cos a)]
tg 2a= 2[(1-cos a)]/[(2 - 1/cosa)]
Answered by
1
Similar questions