If sinA+cosA=underroot2cos(90-A), then prove that tanA=underroot2+1
Answers
Answered by
0
Given Equation is
cosA + sinA = \sqrt{2} cos(90 - A )
Using cos(90 - A ) = sinA
cosA + sinA = \sqrt[2] sinA
This can be written as
cosA = \sqrt(2) sinA - sinA
cosA = sinA[ \sqrt(2) - 1 ]
On dividing both side by cosA
cosA/cosA = sinA[ \sqrt(2) - 1 ] /cosA
1 = tanA [ \sqrt(2) - 1 ]
tanA = 1 / [ \sqrt(2) - 1 ]
This can be written as
tanA = [ \sqrt(2) + 1 ] \ [ \sqrt(2) - 1 ] *[ \sqrt(2) + 1 ]
tanA = [ \ sqrt(2) + 1 ] / [ {\sqrt(2) }^2 - 1 ]
tanA = [ \sqrt(2) + 1 ] / [ 2 - 1 ]
tanA = [ \sqrt(2) + 1 ]
Hence Proved
Similar questions