Math, asked by devshashi003, 11 months ago

If sinA + cosA = V2cosA, (0 ≠90°) then the value of tanA is​

Answers

Answered by sanketj
3

sinx + cosx =  \sqrt{2} cosx \\ sinx =  \sqrt{2} cosx - cosx \\ sinx = cosx( \sqrt{2}  - 1) \\  \\ squaring \: on \: both \: sides \\  \\  {sin}^{2} x =  {cos}^{2} (2 + 1 - 2 \sqrt{2} ) \\  {sin}^{2} x = (1 -  {sin}^{2} x)(3 - 2 \sqrt{2} ) \:  \:  \: ...( {sin}^{2} x +  {cos}^{2} x = 1) \\  {sin}^{2} x = 3 - 2 \sqrt{2}  - 3 {sin}^{2} x + 2 \sqrt{2}  {sin}^{2} x \\  {sin}^{2} x + 3 {sin}^{2} x - 2 \sqrt{2}  {sin}^{2} x + 2 \sqrt{2}  - 3 = 0 \\ 4 {sin}^{2} x - 2 \sqrt{2}  {sin}^{2} x + 2 \sqrt{2} - 3 = 0 \\  {sin}^{2} x(4 - 2 \sqrt{2} )  = 3 - 2 \sqrt{2 }  \\  {sin}^{2} x =  \frac{3 - 2 \sqrt{2} }{4 - 2 \sqrt{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ...(i) \\ 1 -  {cos}^{2} x =  \frac{3 - 2 \sqrt{2} }{4 - 2 \sqrt{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: ( {sin}^{2} x +  {cos}^{2} x = 1) \\  {cos}^{2} x = 1 -  \frac{(3 - 2 \sqrt{2}) }{4 - 2 \sqrt{2} }  =  \frac{4 - 2 \sqrt{2}  - 3 + 2 \sqrt{2} }{4 - 2 \sqrt{2} }  \\  {cos}^{2} x =  \frac{1}{4 - 2 \sqrt{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: (ii)  \\  \\ dividing \: (i) \: by \: (ii) \\  \\     \frac{ {sin}^{2}x }{ {cos}^{2}x }  =  \frac{ \frac{3 -2 \sqrt{2}  }{4 -  2 \sqrt{2}  } }{ \frac{1}{4 - 2 \sqrt{2} } } = ( \frac{3 - 2 \sqrt{2} }{4 - 2 \sqrt{2} }  )( \frac{4 - 2 \sqrt{2} }{1} ) \\  {tan}^{2} x = 3 - 2 \sqrt{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: (tanx =  \frac{sinx}{cos} ) \\ \\ taking \: square \: roots \: on \: both \: sides \\  \\  tanx =  \sqrt{3 - 2 \sqrt{2} }

Similar questions