Math, asked by nandita58, 1 year ago

if, sinA + cosecA = 2

So prove that,
sin(A-60°) = 1/2​

Answers

Answered by raja2511919
2

Answer:

this is your solution for the following information

Attachments:
Answered by anu24239
8

\huge\mathfrak\red{Answer}

 \sin \alpha  +  \csc \alpha  = 2 \\  \\  \sin \alpha  +  \frac{1}{ \sin \alpha }  = 2 \\  \\   \frac{ {sin}^{2} \alpha  + 1 }{ \sin \alpha }  = 2 \\  \\  { \sin}^{2}  \alpha  + 1 = 2 \sin \alpha  \\  \\  {sin}^{2}  \alpha  + 1 - 2 \sin \alpha  = 0 \\  \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  so \:  \\  \\ ( {sin}^{2}  \alpha  + 1 - 2 \sin \alpha ) =  {( \sin \alpha  - 1)}^{2}  \\  \\  {( \sin \alpha  - 1)}^{2}  = 0 \\  \\  \sin \alpha  - 1 = 0 \\  \\ sin \alpha  = 1 \\  \\  \alpha  = 90 \\  \\  \sin( \alpha  - 60)  =  \frac{1}{2}  \\  \\  \sin(90 - 60)  =  \frac{1}{2}  \\  \\  \sin(30)  =  \frac{1}{2}  \\  \\  \frac{1}{2}  =  \frac{1}{2}

Similar questions