if sinA +cosecA =2 then find the value of sin^3 A + cosec^3 A
Answers
Answered by
5
hope it helps u mate
Attachments:
Answered by
11
Given Equation is Sina + coseca = 2.
On cubing both sides, we get
(Sina + coseca)^3 = (2)^3
sin^3a + cosec^3a + 3 * sina * coseca(Sin a + coseca) = 8
sin^3a + cosec^3a + 3 * sina * 1/sina(sina + coseca) = 8
sin^3a + cosec^3a + 3 * 1(2) = 8
sin^3a + cosec^3a + 6 = 8
sin^3a + cosec^3a = 8 - 6
sin^3a + cosec^3a = 2.
Hope this helps!
On cubing both sides, we get
(Sina + coseca)^3 = (2)^3
sin^3a + cosec^3a + 3 * sina * coseca(Sin a + coseca) = 8
sin^3a + cosec^3a + 3 * sina * 1/sina(sina + coseca) = 8
sin^3a + cosec^3a + 3 * 1(2) = 8
sin^3a + cosec^3a + 6 = 8
sin^3a + cosec^3a = 8 - 6
sin^3a + cosec^3a = 2.
Hope this helps!
siddhartharao77:
Any doubts.Ask me..Gud luck!
Similar questions