Math, asked by suryanarayana3819, 5 months ago

if sina+coseca=2then find sina+coseca,forn€N​

Answers

Answered by dikshapsaroj8a28abc
7

Solving

sin

x

+

1

sin

x

=

2

sin

2

x

2

sin

x

+

1

=

0

we have

sin

x

=

1

then

sin

n

x

+

1

sin

n

x

=

2

This can be also demonstrated by finite induction.

1) First it is true for

n

=

1

(with sin x = 1 of course)

2) Supposing that it is true for

n

then

3) Prove that it is true for

n

+

1

It is quite easy and it is left as an exercise.

Answered by ADITISOAM
0

Answer:

Answer :- 7

Given that

\sf \: \alpha \: and \: \beta \: are \: the \: zeroes \: of \: {x}^{2} - 6x + yαandβarethezeroesofx

2

−6x+y

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

Sum of the zeroes=

coefficient of x

2

−coefficient of x

\bf\implies \: \alpha + \beta = - \dfrac{( - 6)}{1} = 6 - - - (1)⟹α+β=−

1

(−6)

=6−−−(1)

Also,

Given that,

\rm :\longmapsto\:3 \alpha + 2 \beta = 20:⟼3α+2β=20

\rm :\longmapsto\: \alpha + 2 \alpha + 2 \beta = 20:⟼α+2α+2β=20

\rm :\longmapsto\: \alpha + 2( \alpha + \beta) = 20:⟼α+2(α+β)=20

\rm :\longmapsto\: \alpha + 2 \times 6 = 20:⟼α+2×6=20

\rm :\longmapsto\: \alpha + 12 = 20:⟼α+12=20

\rm :\longmapsto\: \alpha = 20 - 1:⟼α=20−1

\bf\implies \: \alpha = 8⟹α=8

\sf \: Since, \: \alpha \:is \: the \: zeroes \: of \: {x}^{2} - 6x + ySince,αisthezeroesofx

2

−6x+y

\sf \: \therefore \: \alpha \: = 8 \: must \: satisfy \: {x}^{2} - 6x + y∴α=8mustsatisfyx

2

−6x+y

\rm :\implies\: {8}^{2} - 6 \times 8 + y = 0:⟹8

2

−6×8+y=0

\rm :\implies\: 64 - 48 + y = 0:⟹64−48+y=0

\rm :\implies\: 16+ y = 0:⟹16+y=0

\rm :\implies\: y = - \: 16:⟹y=−16

Answer :- 8

Given that

\sf \: a - b,a,a + b \: are \: zeroes \: of \: {x}^{3} - {3x}^{2} + x + 1a−b,a,a+barezeroesofx

3

−3x

2

+x+1

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

Sum of the zeroes=

coefficient of x

3

−coefficient of x

\rm :\implies\:a - b + a + a + b = - \dfrac{( - 3)}{1}:⟹a−b+a+a+b=−

1

(−3)

\rm :\implies\:3a= 3:⟹3a=3

\pink{\bf\implies \:a = 1}⟹a=1

Also,

We know that,

\boxed{\red{\sf Product\ of\ the\ zeroes= - \: \frac{Constant}{coefficient\ of\ x^{3}}}}

Product of the zeroes=−

coefficient of x

3

Constant

\rm :\implies\:(a - b)(a)(a + b) = - \dfrac{(1)}{1}:⟹(a−b)(a)(a+b)=−

1

(1)

Put a = 1, we get

\rm :\longmapsto\:(1 - b)(1)(1 + b) = - 1:⟼(1−b)(1)(1+b)=−1

\rm :\longmapsto\:1 - {b}^{2} = - 1:⟼1−b

2

=−1

\rm :\longmapsto\:{b}^{2} = 2:⟼b

2

=2

\purple{\bf\implies \:b = \pm \: \sqrt{2} }⟹b=±

2

Answer :- 9

Let

'S' represents the Sum of the zeroes of a quadratic polynomial.

and

Let

'P' represents the Product of the zeroes of a quadratic polynomial.

Then,

Required Quadratic polynomial is

\: \: \: \: \: \: \: \: \purple{ \boxed{ \bf \:f(x) = k( {x}^{2} - Sx + P) \: where \: k \ne \: 0}}

f(x)=k(x

2

−Sx+P)wherek

=0

Similar questions