if sinA+cosecA=K, find value of cosA
Answers
Step-by-step explanation:
sinA+cosecA=k
sinA+1/sina=k
sin^2-ksinA+1=0
get sinA
and after cosA=√1-sin^2A
Mark as brilliant and take thanks for all question
Given:- sinA + cosecA = k
To Find:- The value of cosA .
Answer :- Given that , sinA+cosecA=K .
⇒ sinA+cosecA=K .
⇒ sinA + 1/sinA = k .
⇒ sin²A + 1 / sinA = k
⇒ sin²A + 1= k sin A .
⇒ sin²A- k sinA + 1 = 0.
⇒ sinA = - b ± √b² - 4ac / 2a . [Quadratic formula]
⇒ sinA = +k ± √ k² -4×1×1/2
⇒ sinA = k ± √k² - 4/2
⇒ sinA = k + √ k² - 4 / 2 , k - √k² - 4 /2
Also , we know ;
⇒ sin²A + cos²A = 1.
⇒ ( k + √(k² - 4)/2)² -1 = cos²A
⇒ cos²A = k² + k² - 4 × 2k(√k²-4)/4
⇒ cos²A = 2k² -8k(√k² - 4) /4
⇒ cosA = √ [ 2k² - 8k{√(k² - 4) }]/2
★Learn more from Brainly :-
1)sinA÷ cotA+cosecA - sinA÷cotA-cosecA = ????
https://brainly.in/question/18378749?utm_source=android&utm_medium=share&utm_campaign=question
2)cosecA/cosecA+1= 1-sinA/sinA
https://brainly.in/question/1171420?utm_source=android&utm_medium=share&utm_campaign=question