if sina is a geometric mean of sinb and cosb the prove that cos2a=2cos^2 (x/4 +b)
Answers
Answered by
1
Step-by-step explanation:
If sinβ is the geometric mean between sinα and cosα, then sin
2
β=sinα.cosα
⇒cos2β=1−2sin
2
β
=1−2sinα.cosα
⇒cos
2
2β=(1−sin2α)
2
Now if we simplify option A using 2sinA.cosB=sin(A+B)+sin(A−B), we get
2sin
2
(
4
π
−α)2cos
2
(
4
π
+α)=(2sin(
4
π
−α)cos(
4
π
+α))
2
=(sin
2
π
+sin(−2α))
2
=(1−sin2α)
2
Similarly, we can verify other options.
Hence option A is correct.
Similar questions