Math, asked by meanishasharma, 1 year ago

if sina=ksin(a+b) show that tan (a+b) = sinb/cosb-k


rahul200013: provide attachment plzz
meanishasharma: I can't edit the question
meanishasharma: This question is same as question no.6 of previous attachment
rahul200013: well you can post it again
rahul200013: ok
meanishasharma: Plz solve this

Answers

Answered by bibesh9851
7

Answer:

You are an ace so i think you know all the formula of compound angle so here is your answer

Step-by-step explanation:

Hope it helps you.

Attachments:
Answered by ssanskriti1107
1

Answer:

tan (a+b) = \frac{sinb}{cosb-k}  is proved.

Step-by-step explanation:

Given:  sina=ksin(a+b)    \implies  k=\frac{sina}{sin(a+b)}    ......(i)

           tan (a+b) = \frac{sinb}{cosb-k}    .......(ii)

Taking RHS of eq (ii),

\frac{sinb}{cosb-k}

=  \frac{sinb}{cosb-\frac{sina}{sin(a+b)} }                  ....from (i)

= \frac{sinb  \hspace{.1cm}  sin(a+b)}{cosb  \hspace{.1cm} sin(a+b)-sina}

= \frac{sinb  \hspace{.1cm}  sin(a+b)}{cosb  \hspace{.1cm}(sinacosb + cosasinb)-sina}

= \frac{sinb  \hspace{.1cm}  sin(a+b)}{sina \hspace{.1cm}  cos^{2}b + cosa\hspace{.1cm}  cosb \hspace{.1cm}  sinb-sina}

= \frac{sinb  \hspace{.1cm}  sin(a+b)}{-sina \hspace{.1cm} (1- cos^{2}b) + cosa \hspace{.1cm}  sinb\hspace{.1cm}cosb }

= \frac{sinb  \hspace{.1cm}  sin(a+b)}{-sina \hspace{.1cm} sin^{2}b+ cosa \hspace{.1cm}  sinb\hspace{.1cm}cosb }

= \frac{sinb  \hspace{.1cm}  sin(a+b)}{sinb \hspace{.1cm} (cosa \hspace{.1cm}  cosb - sina  \hspace{.1cm} sinb)}

= \frac{  sin(a+b)}{cos(a+b) }

= tan(a+b)

Hence proved.

#SPJ3

Similar questions