Math, asked by dattatraykumbhar9921, 7 months ago

If sinA=(m-1)/(m+1), then prove that, tanA*cosecA =(m+1)/2√m​

Answers

Answered by Anonymous
3

Answer:

Given:

\sf{sin \ A=\dfrac{m-1}{m+1}}

To prove:

\sf{tan \ A.cosec \ A=\dfrac{m+1}{2\sqrt{m}}}

Solution:

\sf{cos^{2}A=1-sin^{2}A}

\sf{\therefore{cos^{2}A=1-(\dfrac{m-1}{m+1})^{2}}}

\sf{\therefore{cos^{2}A=1-\dfrac{(m-1)^{2}}{(m+1)^{2}}}}

\sf{\therefore{cos^{2}A=\dfrac{(m+1)^{2}-(m-1)^{2}}{(m+1)^{2}}}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\therefore{cos \ A=\dfrac{4\sqrt{m}}{m+1}}}

\sf{\underline{\underline{Proof:}}}

\sf{L.H.S.= tan \ A.cosec \ A }

\sf{[But \ cosec\theta=\dfrac{1}{sin\theta}]}

\sf{=tan \ A\times\dfrac{1}{sin \ A}}

\sf{[But \ tan\theta=\dfrac{sin\theta}{cos\theta}]}

\sf{=\dfrac{sin \ A}{cos A}\times\dfrac{1}{sin \ A}}

\sf{=\dfrac{1}{cos \ A}}

\sf{=\dfrac{1}{\frac{2\sqrt{m}}{m+1}}}

\sf{=\dfrac{m+1}{2\sqrt{m}}}

\sf{=R.H.S.}

\sf{Hence, \ proved.}

Similar questions