Math, asked by satishkulkarni15, 4 months ago

If sinA + sin^2A = 1 then cos^12A + 3cos^10A + 3cos^8A +cos^6A = ?​

Answers

Answered by shadowsabers03
5

Given,

\longrightarrow\sin A+\sin^2A=1

\longrightarrow\sin A=1-\sin^2A

\longrightarrow\sin A=\cos^2A\quad\quad\dots(1)

So,

\longrightarrow S=\cos^{12}A+3\cos^{10}A+3\cos^8A+\cos^6A

Taking \cos^6A common in RHS,

\longrightarrow S=\cos^6A\left(\cos^6A+3\cos^4A+3\cos^2A+1\right)

Factorising RHS,

\longrightarrow S=\cos^6A\left((\cos^2A)^3+3(\cos^2A)^2\cdot1+3\cos^2A\cdot1^2+1^3\right)

\longrightarrow S=(\cos^2A)^3\left(\cos^2A+1\right)^3

\longrightarrow S=\left[\cos^2A\left(\cos^2A+1\right)\right]^3

\longrightarrow S=\left(\cos^4A+\cos^2A\right)^3

\longrightarrow S=\left((\cos^2A)^2+\cos^2A\right)^3

From (1),

\longrightarrow S=\left(\sin^2A+\cos^2A\right)^3

\longrightarrow\underline{\underline{S=1}}

Answered by Anonymous
6

Answer:

Reffer the attachment for your answer mate

Attachments:
Similar questions