If sinA + sin²A = 1, prove that cos²A + cos⁴A = 1.
PrinceJK786:
huu
Answers
Answered by
21
If sinA + sin²A = 1, prove that cos²A + cos⁴A = 1.
Good question,
Here is your answer!
=) sinA + sin²A = 1
=) sinA = 1 - sin²A
=) sinA = cos²A
Put its value in cos²A + cos⁴A,
=) cos²A + (cos²A)²
=) cos²A + sin²A
=) 1
Hence LHS = RHS, proved.
Answered by
10
Given , sinA + sin²A = 1
To prove , cos²A + cos⁴A = 1
Now ,
sinA + sin²A = 1
=> sinA = 1 - sin²A
=> sinA = cos²A [ °•° sin²∅ + cos²∅ = 1 ]
=> ( sinA )² = ( cos²A )² [ • squaring both sides ]
=> sin²A = cos⁴A
=> 1 - cos²A = cos⁴A [ °•° sin²∅ + cos²∅ = 1 ]
=> cos⁴A + cos²A = 1 [ Hence Proved ]
____________________________
Hope it helps !!
Similar questions