If sinA+sin²A=1 then prove that cos²A+cos⁴A=1
Answers
Answered by
17
___________________________
Given , sinA + sin²A = 1
To prove , cos²A + cos⁴A = 1
Now ,
sinA + sin²A = 1
=> sinA = 1 - sin²A
=> sinA = cos²A [ °•° sin²∅ + cos²∅ = 1 ]
=> ( sinA )² = ( cos²A )² [ • squaring both sides ]
=> sin²A = cos⁴A
=> 1 - cos²A = cos⁴A [ °•° sin²∅ + cos²∅ = 1 ]
=> cos⁴A + cos²A = 1 [ Hence Proved ]
____________________________
varun3632:
thanks
Similar questions